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Exact Fixed Points in Discrete Hydrodynamics 
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Recently a discrete formulation of hydrodynamics was introduced, which was 
shown to be exactly renormalizable in a certain sense: a procedure was given for 
computing the equations of motion on a coarse space and time scale from those 
on a finer scale. In this paper we carry out this coarsening procedure explicitly, 
giving exact numerical results for a one-dimensional diffusive system. The 
coarsening transformation is found to have a one-parameter family of nontrivial 
fixed points, parameterized by a diffusion parameter D. This result gives a new 
way of understanding why so many systems obey Fick's law j = - D ' d n / d x .  
Any of an extremely broad class of microscopic equations of motion, when 
viewed on a coarse enough scale, obey the fixed-point equations (which are 
equivalent to Fick's law). The methods used here are equally applicable to 
higher-dimensionality systems such as fluids. 
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A f o r m a l  p r o c e d u r e  for  e x a c t l y  c o a r s e n i n g  2 t he  e q u a t i o n s  of  m o t i o n  in  

d i s c r e t e  h y d r o d y n a m i c s  w as  r e c e n t l y  g iven .  (l) I n  the  p r e s e n t  p a p e r  we s h o w  

h o w  this  p r o c e d u r e  m a y  b e  c a r r i e d  o u t  n u m e r i c a l l y ,  g i v i n g  r e su l t s  fo r  a 

p a r t i c u l a r  case .  A d e s c r i p t i o n  of  t he  c o a r s e n i n g  p r o c e d u r e  is g i v e n  in  t he  

A p p e n d i x .  I n  the  p a p e r  i tself  we will  s k e t c h  t he  f o r m u l a t i o n  of  d i s c r e t e  

h y d r o d y n a m i c s  a n d  g ive  t he  n u m e r i c a l  resul ts .  
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2In the language of critical phenomena, what we call "space coarsening" might be referred to 
as "real-space dynamic renormalization." However, this expression refers to Hamiltonian 
(rather than equation-of-motion) renormalization, in theories in which time is continuous, so 
there is no analog of "time coarsening." For this reason, and because the word 
"renormalization" has undergone so many mutations that its ordinary meaning has no 
relation to its technical one, we prefer "coarsening" here. 
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Discrete hydrodynamics was introduced (2) because it can be formu- 
lated more precisely than continuum theories, and because it is as complete 
a description of a system as possible on any particular distance and time 
scale (in a sense defined in Ref. 2). The general method is described in 
detail in Ref. 1; we are here concerned with the simplest application of the 
method, to a one-dimensional diffusive system (for example, to a solute 
diffusing in a capillary tube, or various well-known mathematical models: 
Markovian or non-Markovian random walks, discrete or continuous in 
space and time). Given a distance scale W and a time scale r, we want to 
describe the system in terms of a set of variables related to discrete cells. In 
one dimension, the cells are line segments with centers at lW (l is a 
half-integer). The end points of the segments ("faces") are at f W  ( f  is an 
integer). The analog of the continuum density variable is the cell content 
c(l, m). This is the number of particles in cell l at time mr, where m is an 
integer. The intervals between these times are labeled by half-integers m (so 
mr is the midpoint of a time interval). The quantity we wish to predict is 
the transfer x(f,m), the net number of particles transferred to the right 
during the interval m, across the point f W  separating two cells ( f  is an 
integer). The theory is based on a complete description of the joint 
probability distribution of transfers x(f, 1/2) in the ensemble of fixed 
discrete history [fixed c(l,O) and x(f,m) for m <0].  This description 
involves a power series expansion of the moments of the distribution, which 
we refer to as an "equation of motion." For any specific system, the 
equation-of-motion coefficients may in principle be computed from the 
microscopic dynamics (this has in fact been done for a fluid model(9'l~ 
Our interest in this paper, however, is not in specific systems but in looking 
for fixed points (in the manifold of all possible equations of motion, 
describing all possible one-dimensional diffusive systems) under a coarsen- 
ing transformation. We expect this fixed-point equation o f  motion to be 
linear (since Fick's law is) so we consider here only linear terms in the 
power series. In addition, we will concern ourselves only with the first and 
second cumulant moments (1) of the transfer distribution (this leads to exact 
results if the distributions are multivariate Gaussians, and becomes increas- 
ingly accurate as we approach the coarse-cell limit). We denote these 
moments by Ix(f, i/2)1 and Ix(f,  1/2)x(f', 1/2)]. Each is a function of all 
history variables; expanding the former to lowest nonvanishing order gives 

Ix(f, 1/2)1 = ~] Ix(f,  1/2)]c~,.o)c(l,O ) + ~ Ix(f,  1/2)]x~f,m)x(f',m ) 
l f ' ,m<O 

(1) 
where we have denoted the coefficient describing the influence of c(l, O) on 
x(f ,  1/2) by Ix(f, 1/2)]c~,.0) (this was called B in Refs. 1, 9, and 10). The 
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lowest-order term in the power series for the second moment is just the 
constant term, which we simply denote by [x(f, 1/2)x(f ' ,  1/2)]. 

The equation of motion of our system is thus uniquely determined by 
three sets of numbers, which are listed for a number of different equations 
of motion in Table I. The line labeled [xx] contains the fluctuation 
moments [x(f, 1/2)x(f', 1//2)] for I f - f q  = 0, 1,2 . . . . .  respectively. The 

Table I. Various Stages of Coarsening Transformations. Spatial Separation 
Increases to the Right (1/2,  3 /2,  5 / 2 , . . .  for [X]o 0, 1,2 . . . .  for [xx] or [x]x ) 

[xx] 1 . 0 0 0 0  

[ x ] c  - 0 . 2 5 0 0  

Ix L 0.oo0o 

T - c o a r s e n  

lxx] 1 . 3 7 5 0  0 . 2 5 0 0  0 . 0 6 2 5  

[ x ] c  - 0 . 3 1 2 5  - 0 . 0 6 2 5  0 . 0 0 0 0  

[ x ] .  0 . 0 0 0 0  0 . 0 0 0 0  

0 . 0 0 0 0  

D =  0 . 2 5 0 0  

S - c o a r s e n  

[xx] 1 . 5 5 3 0  0 . 1 5 3 8  0 . 0 0 2 5  0 . 0 0 0 2  - 0 . 0 0 0 0  

[ x ] c  - 0 . 1 8 2 5  0 . 0 0 4 5  - 0 . 0 0 0 4  0 . 0 0 0 1  - 0 . 0 0 0 0  

I x  L - 0 , 1 4 0 6  - 0 . 0 6 6 7  0 . 0 0 3 3  - 0 . 0 0 0 3  0 . 0 0 0 0  

m =  - 3 / 2  - 0 . 0 3 6 6  - 0 . 0 1 7 8  0 . 0 0 0 3  - 0 . 0 0 0 1  0 . 0 0 0 0  

m =  - 5 / 2  - 0 . 0 0 9 5  - 0 . 0 0 4 8  - 0 . 0 0 0 1  - 0 . 0 0 0 1  0 . 0 0 0 0  

m =  - 7 / 2  - 0 . 0 0 2 5  - 0 . 0 0 1 3  - 0 . 0 0 0 0  

m =  - 9 / 2  - 0 . 0 0 0 6  - 0 . 0 0 0 3  

r n =  - 1 1 / 2  - 0 . 0 0 0 2  

D = 0 . 5 0 0 0  

0 . 0 0 0 0  

0 . 0 0 0 0  

- 0 . 0 0 0 0  

D = 0 . 1 2 5 0  

T - c o a r s e n  

[xx I 2 . 0 3 0 4  0 . 3 9 3 9  0 . 0 4 5 3  0 . 0 0 2 6  0 . 0 0 0 0  - 0 . 0 0 0 0  

[ x l c  - 0 . 2 5 3 5  - 0 . 0 1 8 0  0 . 0 0 1 1  0 . 0 0 0 1  - 0 . 0 0 0 0  0 . 0 0 0 0  - 

[ x ] x  - 0 . 0 7 4 7  - 0 . 0 4 3 5  - 0 . 0 0 5 6  0 . 0 0 0 7  0 . 0 0 0 1  - 0 . 0 0 0 0  

m = - 3 / 2  - 0 . 0 1 1 9  - 0 . 0 0 7 5  - 0 . 0 0 1 5  0 . 0 0 0 2  0 . 0 0 0 1  

m = - 5 / 2  - 0 . 0 0 1 8  - 0 . 0 0 1 2  - 0 . 0 0 0 3  - 0 . 0 0 0 0  

m = - 7 / 2  - 0 . 0 0 0 2  - 0 . 0 0 0 1  - 0 . 0 0 0 0  

m = - 9 / 2  - 0 . 0 0 0 0  - 0 . 0 0 0 0  D = 0 . 2 5 0 1  ~ 

T S T - c o a r s e n  a g a i n  

[xx] 3 . 8 0 5 1  0 . 8 3 0 0  0 . 1 0 5 1  0 . 0 0 5 8  0 . 0 0 0 0  0 . 0 0 0 0  

[ x ] c  - 0 . 2 5 3 2  - 0 . 0 1 7 4  0 . 0 0 1 6  - 0 . 0 0 0 0  - 0 . 0 0 0 0  0 . 0 0 0 0  

[ x ] x  - 0 . 0 7 4 4  - 0 . 0 4 0 9  - 0 . 0 0 3 2  0 . 0 0 1 0  - 0 . 0 0 0 0  - 0 . 0 0 0 0  

m = - 3 / 2  - 0 . 0 1 1 5  - 0 . 0 0 6 7  - 0 . 0 0 0 7  0 . 0 0 0 3  0 . 0 0 0 0  

m = - 5 / 2  - 0 . 0 0 1 7  - 0 . 0 0 1 0  - 0 . 0 0 0 2  0 . 0 0 0 0  

m = - 7 / 2  - 0 . 0 0 0 2  - 0 . 0 0 0 1  - 0 . 0 0 0 0  

m = - 9 / 2  - 0 . 0 0 0 0  - 0 . 0 0 0 0  D = 0 , 2 5 0 3  a 
i 

a T h i s  u p w a r d  d r i f t  o f  D is  d u e  to  t h e  t r u n c a t i o n  o f  t h e  a p p a r e n t l y  e x p o n e n t i a l  l o n g - t i m e  

t a i l  o f  t h e  s p a c e - c o a r s e n e d  e q u a t i o n  o f  m o t i o n .  
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linear coefficients [x(f ,  1/2)]c~t.0) are given for l - f  = l /2 ,  3/2, 5 / 2 , . . . ,  
and then the non-Markovian coefficients [x]x for m = - ( 1 / 2 ) ( I f - f ' l  = 0, 
1,2 . . . .  on one line), m = - 3 / 2  (next line), etc. 

A particular model (say, a random walk) need not have equations of 
motion of this form (they could, for example, be non-Gaussian). But after a 
few coarsening transformations the non-Gaussian parts will become small 
(they are "irrelevant" in the Wilson sense). 

A quantity which is important in one-dimensional diffusive systems is, 
of course, the diffusivity D'. This can be determined from the discrete 
equations of motion by applying them to a system with a uniform content 
gradient and uniform transfer312) The ratio of the corresponding flux j to 
the density gradient is 

W 2 
D ' =  D (2) 

,7- 

where D is a dimensionless diffusion parameter determined by 

D = ~ ( f -  / ) I x ( f ,  1/2)]c(z.0~+ D ~ Ix ( f ,  1/2)]x//,m ~ (3) 
l f ' ,rn 

The first three lines of Table I describe the simplest possible nontrivial 
equation of motion, in which each transfer is influenced only by the cell on 
either side (Ix(0, 1/2)]c~+1/2,m = W 1/4, which gives D = 1/4; this value 
was chosen for no particular reason). The transfers are uncorrelated with 
each other (Ix(0, 1/2)x(f ,  1/2)] = 0 if f 4 :  0). Such an equation of motion 
for cells of width W exactly determines ~l) the equation of motion of the 
same system for cells of width 2 W, by a space-coarsening transformation. 
The coarsened equation of motion gives moments of the transfers x( f ,  1/2) 
in an ensemble in which we fix only coarse-cell contents, say, C(L, 0) [L is 
an odd integer; the coarse cell at WL contains two fine cells centered at 
(L + 1/2)W]. Evidently C(L,O) is the sum r - 1/2,0) + c(L + 1/2,0). 
We know (from the fine-cell equation of motion) how the transfer depends 
on the fine contents r specifying these is equivalent to specifying their sum 
C and one other linear combination, which may as well be taken to be the 
content difference c(L - 1/2, 0) - e(L + 1/2, 0). This fluctuates in the new 
coarse ensemble. We can still exactly calculate the moments of the transfer 
distribution if we know the moments of the distribution of this content 
difference. Its fluctuations are caused by previous transfers across the 
"internal face" at WL, the center of the coarse cell, which are in turn 
described by the fine-cell equations of motion. The calculation of the 
moments is straightforward but intricate, and is described in detail in the 
Appendix. Also described in the Appendix is the coarsening procedure 
which computes moments of X, a coarse transfer over a time interval from 
0 to 2r, which is the sum of two fine transfers over the intervals (0, r) and 
(r, 2r). 
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We first try out the time-coarsening transformation; the result is given 
in lines 4-6  of Table I. Because of the special (Markovian) nature of these 
fine-scale equations, this can be done exactly, with no truncation error (all 
coefficients appearing are rational). It will be noted that [x]c is increasing 
in size and spatial range, and the associated diffusion parameter has 
doubled to 0.5000. To reverse these tendencies, we next coarsen the space 
scale. The resulting equations of motion (describing cells of width 2 W  
instead of W) are given next in Table I. Now the dependence on the history 
becomes important ([x (0, 1/2)]x(0,_ t/2) = - 0.1406, etc.), and D = 0.1250. 

These changes in D are consistent with the notion that the diffusivity 
D' [Eq. (2)] should be an invariant of the coarsening transformation (so 
when W doubles, D decreases by 1/4, etc.). This invariance is not expected 
for nonlinear equations of motion, (~'3'4) but seems to be true for the present 
linear ones. Thus the parameter D will be invariant under a triple- 
coarsening transformation we will refer to as TST (one space and two time 
coarsenings; their order is not critical, but TST is most convenient from the 
point of view of numerical convergence because it minimizes the variation 
of D from its initial value). Obviously, looking for a fixed point under T or 
S alone would be futile because even D is not fixed. It is possible that TST 
may have a fixed point, though, so we bring D back to ! / 4  by another T 
coarsening. This is seen (Table I) to shorten (halve, in some sense) the time 
range of the equation of motion. In fact, the output of this first TST is very 
similar to the input, except for a doubling of the fluctuations (i.e., an 
increase in root-mean-square fluctuation of 21/2). However, the scale of the 
fluctuations is somewhat arbitrary; in any real system the average content 
would have doubled, so the relative rms fluctuation has decreased by 2-1/2. 
In the large-cell limit the relative fluctuations vanish. The important (linear) 
parts of the equation of motion seem to be near a fixed point of TST. 
Performing TST again (Table I) confirms this suspicion, in fact showing 
remarkably fast convergence to the fixed point, again with a doubling of 
the fluctuations. We may search for the fixed point without assuming 
anything about the overall scale of the fluctuations (but requiring their 
space dependence to remain fixed) by renormalizing them to [x(0, 1/2) 2] 
= 1.0 (that is, by dividing each by [x(0, 1/2)2]) after each TST transforma- 
tion. A practical iterative procedure for finding the fixed point also requires 
renormalizing [x]c to return D to its correct value (otherwise small trunca- 
tion errors cause D to drift significantly over many iterations). The result- 
ing fixed point 3 for D = 1/4  is given in Table II; the fixed points for 

3Convergence to the fixed point is not as rapid as Table I might suggest. It is controlled by the 
largest eigenvalue of our transformation, which appears to be about 0.6 (we have effectively 
projected out eigenvectors with eigenvalues 2.0 and 1.0, by renormalizing Ix 2] and [x]c , 
respectively). The slow eigenvector corresponds to changes in the amplitude of the tail [x]x ; 
four-figure accuracy requires about 15 iterations. 
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Table II. Equations of Motion at Fick's Points 

D =  1/4  

[xx] 1.0000 0.2365 0.0290 0.0016 0.0000 
[x]c - 0.2480 - 0.0143 0.0011 - 0.0001 - 0.0000 

[x]x - 0.0616 - 0.0321 - 0.0011 0.0007 - 0.0001 
m =  - 3 / 2  - 0.0078 - 0.0042 - 0.0001 0.0002 - 0.0000 
m =  - 5 / 2  - 0.0010 - 0.0005 - 0.0001 0.0000 
m =  - 7 / 2  - 0.0001 - 0.0001 - 0.0000 
m =  - 9 / 2  - 0.0000 - 0.0000 

D =  1/2 

[xx] 1.0000 0.3697 0.0995 0.0187 
[x]c - 0.3120 - 0.0685 - 0.0047 0.0004 
[x]x - 0.0257 - 0.0179 - 0.0054 0.0000 
m =  - 3 / 2  - 0.0018 -0 .0013  - 0.0004 0.0000 
m = - 5 / 2  - 0.0001 - 0.0001 - 0.0000 - 0.0000 
m =  - 7 / 2  - 0.0000 - 0.0000 - 0.0000 

m = - 9 / 2  0.0000 0.0000 

D = 1/8 

[xx] 1.0000 0.1287 0.0023 0.0001 
[X]c - 0.1784 0.0084 - 0.0011 0.0002 
[x]x - 0.1238 - 0.0473 0.0064 - 0.0009 
m =  - 3 / 2  - 0.0274 - 0.0103 0.0025 - 0.0005 
m =  - 5 / 2  - 0.0063 - 0.0021 0.0008 - 0.0002 
m =  - 7 / 2  - 0.0014 - 0.0004 0.0002 
m = - 9 / 2  - 0.0003 -0 .0001  

a Diffusion parameter before renormalization to 1 /4  or I /2 .  
b[x(0, 1/2)2], before renormalizing to 1.0. 

- 0.0000 
0.0000 

- 0.0000 

D = 0.2501 ~ 

f =  2.000@ 

0.0023 0.0002 
- 0 . 0 0 0 0  - 0.0000 

0.0003 0.0000 
0.0000 

D = 0.4996" 

f =  2.0005 b 

- 0 . 0 0 0 0  0 . 0 0 0 0  

- 0.0000 0.0000 
0.0001 - 0.0000 
0.0001 

D = 1 / 2  a n d  D = 1 / 8  ( o b t a i n e d  a s  b y - p r o d u c t s )  a r e  a l s o  g i v e n .  T h e  

D = 1 / 2  e q u a t i o n  o f  m o t i o n  s o  o b t a i n e d  is c l e a r l y  a f i x e d  p o i n t  o f  T T S ;  w e  

h a v e  c h e c k e d  t h a t  i t  is  a l s o  a f i x e d  p o i n t  o f  T S T ,  to  w i t h i n  10 - 3 .  T h i s  

p r o v i d e s  a s t r o n g  c h e c k  o n  t h e  c o m p u t e r  p r o g r a m ;  it  w o u l d  b e  a r e m a r k -  

a b l e  c o i n c i d e n c e  if t h e  r e s u l t  o f  a n  i n c o r r e c t  T w e r e  i n v a r i a n t  u n d e r  a n  

i n c o r r e c t  T S T .  E v i d e n t l y  t h e  f i x e d  p o i n t  f o r  D e q u a l  t o  a n y  p o w e r  o f  2 c a n  

b e  o b t a i n e d  b y  r e p e a t e d  c o a r s e n i n g .  H o w e v e r ,  T a b l e  I I  s h o w s  t h a t  i n c r e a s -  

i n g  D c a u s e s  [ x ] c  to  s p r e a d  o u t  i n  s p a c e .  G o i n g  b e y o n d  D = 1 / 2 ,  r e t a i n i n g  

f o u r - d i g i t  a c c u r a c y ,  w o u l d  r e q u i r e  i n c l u d i n g  m o r e  t e r m s  t h a n  w e  h a v e  u s e d  

( s ee  A p p e n d i x ) ;  i n  f a c t  t h e  l a r g e  (10  - 3 )  e r r o r  i n  a p p l y i n g  T S T  to  t h e  

D = 1 / 2  e q u a t i o n  o f  m o t i o n  o c c u r s  b e c a u s e  t h e  D = 1 e q u a t i o n  e x t e n d s  

s i g n i f i c a n t l y  b e y o n d  f -  l - -  5 �89 o u r  p r e s e n t  l i m i t .  S i m i l a r l y ,  d e c r e a s i n g  D 

c a u s e s  [X]x to  s p r e a d  o u t  i n  t i m e ;  t h e  e q u a t i o n  o f  m o t i o n  b e c o m e s  v e r y  

n o n - M a r k o v i a n .  

F o r  v e r y  l a r g e  D ,  o n e  e x p e c t s  t h e  b e h a v i o r  to  b e  n e a r l y  M a r k o v i a n ,  s o  
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the ensemble of fixed contents (say, c = 1.0 in cell l = 0 only) can be 
approximated by a continuum initial-value problem with density uniformly 
distributed in this cell. The transfers can then be obtained exactly in terms 
of the integral of the error function; to be precise, 

[x(f, 1/2)]c(,,o)=Dl/2[ilerfc( f-l-I/2~-(l~ )-- ilerfc( f- l+ 2 )] 

(4) 
using the notation of Ref. 5. This gives 0.315, 0.075, 0.0081, 0.0004 for 
D = 1/2 and 0.257, 0,0246, 0.0005 for D = 1/4. The first of these differs 
only by 1% from the value in Table II; evidently D does not have to be 
very large for Eq. (4) to be a good approximation. 

We know of no comparable heuristic estimate of the lengthening of the 
time tail in [X]x for small D. Empirically, however, this tail appears to be 
exponential: to our numerical accuracy (rarely better than 5% in the tails) 
the ratio [x(f, 1/2)]x(0,m)/[x(f, 1/2)]x(0,,,_1) is constant, approximately 
0.221, 0.126, and 0.0682 for D = 1/8, 1/4, and 1/2, respectively. 

It is important to realize that the coarsening transformation used in 
this paper is not an approximate one, such as those which have been 
frequently used in the renormalization of critical systems (Migdal (6) or 
bond-decimation approximations, e expansions, (7) second-order cumulant 
expansions, (8) etc.). If one of the equations of motion in Table I or Table II 
exactly describes a system (and we can certainly define a model system for 
which this is true) then the joint probability distribution of coarsened 
transfers is exactly described (except for truncation errors, which can be 
made arbitrarily small) by the coarsened equations given in the table. 
Among the methods mentioned above which have been used for critical 
systems some are formally successive-approximation schemes and therefore 
potentially exact; however, it has not proved practical to carry them to 
convergence. Of course the critical systems they describe are more complex 
than the system we treat here. Nevertheless, the exactness with which the 
discrete method obtains the diffusive fixed point suggests that it may be 
useful for critical systems. It would also be interesting to apply the 
coarsening transformation of the Appendix to the case of a three- 
dimensional fluid, for which discrete equations of motion on a small scale 
have already been calculated numerically. (9'1~ 

One may view the present results in the context of a fundamental 
principle of statistical mechanics(J 1): large classes of microscopic equations 
of motion, differing greatly in detail, become similar ("obey Fick's law") on 
a sufficiently coarse space and time scale. This has in fact often been 
demonstrated explicitly for discrete microscopic models (e.g., random 
walks). What has apparently not been previously realized is that the 
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coarsening can be done in such a way that the coarsened equations have 
the same form as the fine-scale ones, and that to do this precisely requires 
the former to be discrete in space and time. One can then introduce the 
very powerful notion of a "fixed point," and instead of showing one-by-one 
that various specific microscopic models have a common large-scale behav- 
ior, one can demonstrate that very large classes of systems (excluding only 
pathological ones for which the equation-of-motion parameterization does 
not converge) have such common behavior, described by the fixed-point 
equation of motion. To develop this point of view completely would require 
a careful analysis of the domain of attraction of the fixed point, which has 
not yet been done. 

It is interesting to ask what the role of the differential equations of 
continuum hydrodynamics (for example, Fick's law) would be in such a 
theory. It appears that Fick's law and the fixed-point discrete equations of 
motion should be regarded as the same thing, in some sense. Consider a 
continuum system with density n(x, t) and currentj(x,  t), in which n varies 
on a certain scale ~ (meaning ~l~n/3x[ <~ n). One may then identify the 
content c(l,m) with Wn(lW, m,r) if W<<~, and x(f,m) with "rj(fW, mz) if 
~" << ~2/D'. If one then examines the meaning of the statement "this system 
obeys Fick's law" (using the definition of the derivative), it is essentially 
equivalent to "given any desired accuracy for the equation of motion, W 
and ~- may be made sufficiently small so the system behaves as though it 
were described by the simplest possible discrete equation of motion [like the 
first in Table I, with its single parameter [x]c chosen to satisfy Eqs. (2) and 
(3)]." Because of the properties of the fixed point this is in turn equivalent 
to "given any desired accuracy for the equations of motion, W 0 and % may 
be found such that the system obeys the fixed-point equations of motion 
[with D defined by Eq. (2)] for any W > W 0, ~- > %." From a fundamental 
point of view, the latter ("fixed-point") statement of Fick's law is more 
appealing than the former ("differential-equation") statement since the 
former requires conceptually applying a diffusionlike equation to the sys- 
tem on arbitrarily small scales, which is physically meaningless. 

APPENDIX: DERIVATION OF COARSENING TRANSFORMATION 

We have used for this calculation essentially the method derived for a 
general hydrodynamic system in Ref. 1. It turns out that the calculation is 
simpler if one uses a set of Fourier-transformed variables, so we will give 
here a derivation in terms of these variables. 

When we begin a coarsening transformation, we are given the fine- 
scale equations of motion which describe the distribution of transfers 
x(f, 1/2) in an ensemble of fixed "history variables" h(l,m), with m ~< 0. 
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Here h(l,m) is the content c(l,m) if m is an integer (and l a half-integer), or 
x(l, m) if m is a half-integer (and l an integer). This distribution is described 
by a power series expansion of its moments, t~> A general moment  can be 
denoted [x] r (where F indicates we are using an ensemble of fixed fine- 
scale history, as opposed to the coarse scale used below) if we use a concise 
notation in which x may denote a product of x(f, 1/2)'s. If  h denotes a 
product of history variables, the expansion may be written 

[x]F=EIx]Fh  (A1) 
h 

The sum is over ordered 4 sets of variables; h may denote either this set or 
the product of its variables. In the present numerical calculation we 
consider only coefficients [x] F with one x and one h, or two x 's  and no h's 
(i.e., x = x,,x b and h = 0, the null set). However, we will describe the 
coarsening transformation for the general case. 

We wish to calculate coefficients like [x] F for the coarsened system. In 
the case of space coarsening, this means computing moments in an ensem- 
ble in which only the coarse-cell contents and previous transfers are fixed. 
It turns out that the simplest way to relate the coarse and fine variables is 
by doing a sort of limited Fourier transform (over only one coarse cell) of 
the fine variables. That  is, we define 

C(k,L,m) = ~, (-1)k('-f~c(l,m) (A2) 
ICL 

For a d-dimensional system, k, L, l, and 7are d-vectors, and L labels coarse 
cells of width 2 W (whose centers have position vectors WL). The compo- 
nents of L are odd integers; those of l, odd half-integers. Here Tis the 
"lower left" fine cell in the coarse cell L [i.e., has components L z - 1/2, 
i = 1, d; its only function is to make Eq. (A2) real]. The components of the 
"wave vector" k take only the values 0 and 1. The advantage of this 
transformation is, of course, that C(O,L,m) is exactly the coarse-cell 
content. The other 2 d - 1 variables for this L describe internal fluctuations 
(in one dimension, the left-right content difference described previously) 
within cell L. 

We label the faces of the coarse cells by the vector F (the face is 
centered at WF). Then we can define a Fourier-transformed transfer 

X(k,F,m) = ~ ( -  1)i' (f-f~x(f,m) (A3) 
fcF 

Here k is a (d - 1)-dimensional vector (in the plane of the face) a n d f i s  the 
lower left fine face in F. However, there are only 2 a -  ld fine faces on the d 

4Unordered sets were used in Ref. 1; this only changes the coefficients by combinatorial 
factors. 
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exterior faces associated with each coarse cell. There are another 2 a- Id 
"interior" fine faces, which may be combined in groups of 2 d- ~ to form d 
"internal coarse faces" centered at the cell center. We may form linear 
combinations of these in any way we please; one convenient way is to use 
Eq. (A3) but allow F to refer to the cell center (position WF). There are 
then d internal coarse faces with this designation; we may distinguish them 
by setting the unused component of k (i.e., the component normal to the 
face) equal to an arbitrary flag, say, 2. 

In one dimension, Eq. (13) reduces to 

X(k,F,m) = x(F,m) (14)  

which is a transfer across an external "face" (i.e., a point at the end of a 
coarse cell) if F is even, and an internal "face" (at the center of a cell) if F 
is odd. 

We may now Fourier-transform (FT) the equation-of-motion coeffi- 
cients [x] F. We denote the result [obtained below, Eqs. (Al l -A14)]  in 

X F general by [ ]t4, where X is a product of FT transfers [Eq. (A3)] and H is a 
product of FT history variables [Eq. (12) or (A3)]. Thus Eq. (A1) becomes 

[ x ] F = E [ x I F H  (A5) 
H 

Our ultimate objective, the coarse equation of motion, describes mo- 
ments in a different (larger) ensemble, of fixed coarse history. If X(k = O) 
denotes a product of FT transfers with k = 0, i.e., coarse-cell transfers, we 
denote such a moment by [X(k = 0)1 c~ (C for coarse, 0 because variables 
with m ~< 0 are fixed). It may be obtained by averaging Eq. (A5) over the 
coarse ensemble: 

[ X(k = O)]co= ~, [ x ] F [  H]CO (16)  
H 

and the coefficient of a product H '  (with k -- 0) of coarse-history variables 
is 

0" n Co CO [X(k= ) J H ' = E [ x ] F [ H ] H '  (A7) 
H 

It is now apparent that computing the coarse equations of motion (A7) 
requires knowing the distribution of fine-cell FT variables H, in the 
ensemble of fixed coarse-cell variables H '  (k = 0), as described by the 
coefficients [H]C~ (Only the k ~ 0 H"s  vary in this ensemble.) These 
may be computed by a relaxation procedure justified and described in 
detail in Section 4 of Ref. 1. Basically it involves assuming a form for 
[H] c~ the distribution of fluctuations at times ~< 0 in the ensemble "CO," 
and allowing the system to evolve (via the fine-scale equations of motion) 
to m = 1. Coefficients [Hi] cl ,  which describe fluctuations in the ensemble 
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"C 1" (coarse variables fixed for m < 1) may then be computed, and may 
be used as input ([H] c~ for the next iteration. The procedure converges 
very rapidly to self-consistency (giving four-figure accuracy in five or six 
iterations even with a very poor starting estimate). 

To carry out this relaxation procedure, we need moments of variables 
at times ~< 1 in the CO ensemble. We must first obtain such moments [hi] F 
in the fine ensemble, from the equation of continuity (I) 

c(l, 1) = c(l,O) + ~ox(f,  1//2) (A8) 
f 

(o is + 1 if x is a transfer into cell l, - 1 if out). This gives 

[h,c(l, 1)];=[hlc(l,o)]F+ ~o[h,x(f, 1/2)]; (A9) 
f 

Here h I is any product of variables at times < 1, and h any product at 
times < 0. The first term on the right-hand side vanishes unless h = 
c(l,O)h' for some h', in which case it is [hi]F,. The right-hand side of Eq. 
(A9) is initially known only when h I involves only times < 1/2, but by 
using Eq. (A9) recursively we can get any [hi] F. Let us denote its Fourier 
transform by [HI] F , satisfying 

[H,]F=E[H,]FH (A10) 
H 

We can obtain [HI] F recursively from 
~ 

[H,C(k,L,m)h,]ff= E ( - 1 )  k( '  :)[H,c(l,m)hl]h (A l l )  
1cL 

[H,X(k,F,m)hl] if= E (-1)k(f-f)[H,x(f,m)hl] ff (A12) 
f c F  

F -d  HI ]Hc(l,m)h (A13) [ H1 ]HC(k,L,m)h ~-~ 2 E (--  1) k.(l-l)[ F 
l c L  

= 2 , - d  i)- k.(f-:5[ F ,Xr E ( -  - .  H, ],x(f,m)h (A14) 
f c F  

[obtained from Eqs. (A2) and (A3)]. Equations (A11) and (A12) are used 
first to compute moments with one coarse factor (so H 1 = 0), then those 
with two factors, then three (two in H1 and one C), etc. 

The moments of H I in the ensemble ("CO") of fixed coarse variables 
are computed from a slight generalization of Eq. (A7): 

[ H, E CO H]H,(k=O) (A15) 
H 

The form of Eq. (A15) is one which will arise twice more below. It relates 
moments in a large ensemble L (here CO) to those of a subensemble S (here 
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F) and may be written 

[ Pf]~= E I pf]Tc'[ f 'c ' ]~ (AI6) 
f t c t  

Variables constrained in the large ensemble L are denoted c [here, H(k  = O, 
m < 0)], variables which fluctuate in the L ensemble but are fixed in the 
smaller ensemble S are denoted f [here, H ( k  @ O, m < 0)], and predicted 
variables (not constrained in either ensemble) are denoted p [here, H(m 
> 0)]. 

r H lcl We need coefficients t ~JH~(k=0) describing the ensemble in which 
coarse variables at times < 1 are fixed (i.e., in addition to the variables 
fixed in the CO ensemble, X(0, F, 1/2) is fixed for all F). These satisfy 

I c l H "  (A17) IHI]C'= E IH, jH,,-- 
H "  

where H "  is a product of variables H ( k  = 0, m ~< I). Since C I is a suben- 
semble of CO, Eq. (AI6) applies with L =  CO, S = C I. The c's are 
H ( k = O , m  ~< 0) as before, but f ' s  are X ( k = 0 ,  m = I /2 )  and p's are 
H(k  ~ 0, m < I). In this case, Eq. (AI6) must be solved for the small- 
ensemble moments [P]~'c, i.e., we must infer the effects of the f luctuat ionsf  
on the predicted variables p by observing their correlations [pf]L in the 
larger ensemble. The solution [ ]ci, with time indices translated backwards 
by I, is then to be used for [ ]c0 in Eq. (AI5) to continue the relaxation 
process. 

We now have a complete set of equations [(A9), (A11)-(A14), (A16) 
with S = F or C 1] for carrying out the coarsening transformation. In 
practice this must be done using cumulant moments, for reasons discussed 
in Section 5 of Ref. 1. These are defined by, e.g., 

Ix ]  F= ~ Ix  r,c F,c . . . 1 ]h, [ X2 ]h2 (a18) 
xl  . . ' h l  . . -  

w h e r e  the sum is over all factorizations of the product x into smaller 
products x 1, x2, etc., and over similar factorizations of h. We will omit the 
superscript c below; all moments will be cumulant moments. In terms of 
cumulants, Eqs. (A9) and (A11)-(A14) are unchanged. Equation (A16) has 
a cumulant form in which the right side is factorized in all possible ways, 
subject to a linkage condition (essentially Eq. 5.5 or 5.6 of Ref. 1). 
However, we have discovered a recursive form which is much more useful 
computationally because it involves multiplying only two factors at a time. 
This is accomplished by defining certain results of partial summation: 

[py]cs.=[pl]  ,+  E E L ,, L L [Pafa]cW's'[PbfJ ]~ (A19) 
f "  fact. 

The outer sum is over all ordered sets of (one or more) fluctuation variables 
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f " ,  and the inner sum is over all possible factoiizations p = PaPb, f = fofb, 
and c = c a c b, such that Pa contains the first variable of p (this avoids double 
counting). Note that the cumulant [pf]sf, vanishes if f v  ~ O (because f is 
fixed in this ensemble; we assume p v a 121). 

Were it not for f ' ,  the left side of Eq. (A19) would be one of the 
cumulant power series coefficients describing the L ensemble. When f '  4 = 121, 
however, [pf]~f, has no direct interpretation as a power series coefficient, 
but is uniquely defined by Eq. (A19) in a recursive manner: a coefficient in 
which f '  has n/> 1 factors is expressed in terms of those in which it has 
more than n factors (coefficients with very large n must be assumed 
negligible). 

The utility of these new coefficients lies in the fact that equations for 
the desired cumulant coefficients can be written in terms of them. In fact 
(A19) itself looks like such an equation, provided it is true for f '  = 0 (for 
f '4~ O it is true by definition, but we are not free to redefine [pf]~). It 
should be possible to prove Eq. (A19) for f ' =  0 by substituting it into a 
cumulant expansion [from Eq. (A18)] of Eq. (A16) and showing that both 
sides have the same terms. This can be easily verified for low-order cases 
(two or three factors; our numerical results require only two) but is not easy 
to see in general. We believe, however, that Eq. (A19) is the correct 
generalization. 

Equation (A19) is used in two ways: once (with L = CO, S = F)  to 
calculate [ ]L, and then (with L = CO, S = C 1) to solve for [ ]s. In the first 
case, Eq. (A19) expresses [pf])f, in terms of coefficients with a smaller p, or 
an equalp but largerf ' .  It can thus be calculated recursively using an outer 
loop over an increasing number of factors in p, and an inner loop over 
decreasing f ' .  We will write explicitly the cases of Eq. (A19) used in this 
paper: we may have one p and one f ' ,  

L S [p]f,=[p]f, ( A 1 9 a )  

(there is no summation because [P]~'7' vanishes) or one p and one c, 

[p]cL= [pJcS+ ~] [ p]f/;[ f -  ] )  (A19b) 
f"  

or one p and one f 

or two p's 

[pfJ~-- E [ p]~,[ f f " ]~  (A19c) 
f"  

L S .+. L p, L 
[Po3~]o=[P~~ E [ P ~ ] f " [ P f f  ]s (A19d) 

f"  

In calculating these for L = CO and S = F, p is a product of H(m > 0), c 
of H ( k  = 0, m < 0), a n d f  of H(k  r m < 0). 
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The other context in which Eq. (A19) is used is in solving for [ ]s (with 
S = C 1). First we must calculate the new [pfl)f, (with f '  :r O), by a simple 

iterative procedure. Consider [pf])yf, (we have replaced f '  by ff' where f i s  a 
single variable, since f '  had at least one factor; the new f '  may be 0). Then 
Eq. (A 19) for ~ L [Pff]4' has a term 

L ~ ~  L 
[ Pf]4f'[ f f  ]o 

on the right (using f "  = f) .  The second factor is intrinsically positive (and 
generally large), and we can easily solve for [pf])~, in terms of (previous 
estimates of) the other [ It's. Once these have been calculated iteratively 
[this involves only Eq. (19c) in our case] the unused equations (19) are 
exactly those for which f = O, in which [ ]s appears and can be calculated 
directly. 

r H 1CI After Eq. (A19) has been thusly solved for t m~(k=O~, these must be 
time translated and used for [ ]co in the next stage of relaxation. The 
coefficients c~ [Hl]u,{k=0~ describe averages in the ensemble of fixed coarse 
history, specified by transfers with m < 1 and contents at m = 0. This is 
exactly the same ensemble as that obtained by fixing contents at m = 1 
[since these are related to those at m = 0 by a continuity equation like 
(A8)]. The coefficients of a power series in this new set of variables will be 
denoted [H1] ~, (so here H '  contains contents at m = 1). We may obtain 
these recursively from a series of "partly new" coefficients defined by 
expressing the first n variables of H" in Eq. (AI7) in terms of new variables 
via (AS). The coefficient of any H'H" in this expression will be denoted 

N,n H ' [HI]H,H,,. Here consists of the first n factors, if there are that many; 
these factors, if contents, are at m = 1. Let us write the (n + 1)st factor 
explicitly, denoting the product by H'C(O, L, O)H" or H'X(O, F, 1 /2 )H " .  If 
we express the (n + l)st variable in terms of new variables, and examine the 
coefficient of a product H'C(O, 1, 1)H" we find 

14 ] N,n+ I N,n 
[ ' * 1 J H ' C ( O , L , I ) H  "~-- [ HI ]H'C(O,L,O)H" ( A 2 0 )  

Similarly, 

] N,n + I N,n 
[ " ,  = [ >I, ] .  - 2 N.  ]H'C(O,L.O)H" (A21) 

L 

By using Eqs. (A20)-(A21) recursively for n = 0, 1, . . . (up to the number 
1-1 N of factors in the subscript) we obtain [ 1]/~,, which is used as a new 

approximation to [ ]co (after a trivial backward time translation of all 
variables). 

We have so far discussed only space coarsening. For time coarsening, 
we must Fourier-transform in time; instead of Eq. (A2) we use 

X(~, f ,M) = 2 (-1)'4"-'~)x(f, m) (A22) 
m C M  
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where the sum is over the two fine intervals labeled by m - - M  _+ 1/2 
contained in the coarse interval M (of length 2~-, centered at Mr), n5 

M + 1/2, and the "frequency" ~0 is 0 or 1. The contents have no FT, but 
for convenience we will define 

C(O,I,M) = c(l,M) (123) 

As in space coarsening, we must calculate fluctuations [of X(1,F,M), an 
"ac transfer"] in the ensemble CO of fixed contents C(O,I,O) and "dc 
transfers" X(0, F, M). This is again done by a relaxation technique involv- 
ing Eq. (A 19); in fact the meanings of c, f,  and p are almost unchanged (we 
must read w for k). The moments [H1] F in Eq. (15) involve times < 2~- and 
can be calculated by Fourier-transforming fine-scale averages [h2] F where 
h 2 is a product of x(f, m) for m < 2. This [h2] F is calculated exactly as in 
Ref. 1: Eqs. (A8) and (A9) give [hi] F, to which we may apply time- 
translated equation-of-motion parameters [x(m = 3/2)] F1 describing the 
ensemble of fixed c(l, t), x(f, m < 1). This gives 

F X F I  [xh,]h= E [ ]h,, [h"h,] r (A24) 
h" 

This has exactly the form of Eq. (A16) with L = F, S = F1, c = h(m ~ 0), 
f=  x(m = 1/2), p = x(m = 3/2). Thus the required cumulants [h2] F can be 
calculated recursively from Eq. (A19). We FT[h2] h by recursive equations 
similar to Eqs. (A 11)-(A 14): 

[H,X(w,f,M)hz]h= ~ (--1) ~ '~)[H,x(f,m)h2] h (A25) 
m c M  

1 [H,]HX(,~,f,M) h = -~ ~ (--1)-'~(m-m)[H,]Hx(f,m)h (A26) 
m c M  

Thus time coarsening can be done with Eqs. (A8)-(A9), (A24)-(126), and 
(A19). 

Carrying out the coarsening procedure numerically requires two types 
of coefficients: Those (denoted F) describing the ensemble of fixed fine 
history (involving both FT and non-FT variables) and those (denoted CO) 
describing the ensemble of fixed coarse history. We began with a list of 
"start-up" coefficients containing one member of each equivalence class 
under space and time translations (i.e., adding or subtracting an integer 
from any single coordinate L, l, F, f, or m). For space coarsening there are 
37 such classes for the fine ensemble and 18 for CO. The latter may easily 
be enumerated as the left-hand sides of Eqs. (19a)-(19d), together with 
[H~H~] c~ and [H] c~ The next approximation (85 fine, 46 coarse) was 
obtained by including all "neighbors" (in which L, l, F, f, or m differs by 1) 
of the start-up coefficients. This process was repeated five times, giving 
finally 387 fine and 291 coarse coefficients. The equations (A15) used to 
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Table AI. Successive Approximations to the D = 0.25 Fixed Point 

[xx] 1.0000 
[x]c - 0.2621 D = 0.2407" 

[x]x - 0.0483 f =  1.601@ 

[xx] 
[xlc 
[X]x 

1.0000 0.1551 
- 0.2285 - 0.0135 D = 0.2720 

- 0.0435 - 0.0160 f =  2.0483 

[xx] 1.0000 0.2132 0.0208 
[x]c - 0.2407 - 0.0151 - 0.0006 

[X]x - 0.0654 - 0.0356 - 0.0048 D = 0.2560 

m =  - 3 / 2  -0.0053 -0.0021 f =  t.9663 

[xx] 1.0000 0.2372 0.0275 0.0016 
[x]c - 0.2503 - 0.0142 0.0015 0.0000 

[X]x - 0.0600 - 0.0317 - 0.0015 0.0011 
m = - 3 / 2  - 0.0067 - 0.0037 - 0.0006 D = 0.2488 
m = - 5 / 2  -0 .0004 -0.0002 f=2 .0039  

[xx] 1.0000 0.2361 0.0287 0.0014 - 0.0002 
[x]c - 0.2482 - 0.0143 0.0011 - 0.0001 - 0.0000 

[X]x - 0.0616 - 0.0323 - 0.0012 0.0008 - 0.0001 

m = - 3 / 2  - 0.0077 - 0.0042 - 0.0003 0.0002 
rn = - 5 / 2  - 0.0008 - 0.0005 - 0.0001 
m = - 7 / 2  - 0.0001 - 0.0000 

(See Table II for best approximation) 

aDiffusion parameter, before renormalizing to 0.25. 
b[x(0, 1/2)2], before renormalizing to 1.0. 

D = 0.2499 

f = 1.9999 

c a l c u l a t e  t h e  l a t t e r  h a d  a t o t a l  o f  3818 t e r m s .  T h e  s a m e  p r o c e s s  f o r  t i m e  

c o a r s e n i n g  led  to  309 f i ne  a n d  165 c o a r s e  c o e f f i c i e n t s .  

T h e  c o n v e r g e n c e  o f  th i s  s u c c e s s i v e - a p p r o x i m a t i o n  s c h e m e  is q u i t e  

r a p i d .  W e  list  in  T a b l e  A I  t h e  r e s u l t s  o b t a i n e d  f o r  t h e  D = 0.25 f i x e d  p o i n t  

in  t h e  f i r s t  f o u r  a p p r o x i m a t i o n s  ( t h e  f i f th  is in  T a b l e  I I ) .  Al l  o f  t h e  

e q u a t i o n - o f - m o t i o n  c o e f f i c i e n t s  h a v e  c o n v e r g e d  to  f o u r  d e c i m a l  p l a c e s .  I t  is 

n o t  p r a c t i c a l  to  t a b u l a t e  all  t he  f l u c t u a t i o n  m o m e n t s  [H]C~ t w o  n u m e r i -  

ca l ly  i m p o r t a n t  o n e s  f o r  s p a c e  c o a r s e n i n g  a r e  [ C ( 1 ,  co l ,  O)]x(o,o _ 1/2) = 0 .2710  
a n d  [ C ( 1 ,  co 1,0)]c(o,3,o) = - 0 .0953.  
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